

Vietnam Academy of Science and Technology

Vietnam Journal of Marine Science and Technology

journal homepage: vjs.ac.vn/index.php/jmst

Morphological characteristics of soft coral *Sarcophyton serenei* (Tixier-Durivault, 1958) in Nha Trang Bay

Ho Son Lam^{1,2}, Nguyen Thi Nguyet Hue^{1,*}, Dao Thi Hong Ngoc³, Dang Tran Tu Tram¹, Nguyen Cong Nhat¹, Hua Thai An¹, Ho Thi Hoa¹, Thai Minh Quang^{1,2}, Hoang Xuan Ben^{1,2}, Dao Viet Ha^{1,2}, Dinh Truong An¹, Nguyen Thi Anh Thu⁴

Received: 26 January 2025; Accepted: 15 March 2025

ABSTRACT

Soft corals are integral components of tropical coral reef ecosystems, contributing significantly to biodiversity and providing substantial economic value as ornamental organisms and sources of bioactive compounds. As such, accurate classification of soft coral species is essential for the sustainable management and exploitation of these resources. Sarcophyton serenei, a soft coral species found in Nha Trang Bay, is commercially important for the marine ornamental trade and the extraction of bioactive substances. This species is characterized by a bright yellow-brown to gray-brown coloration, short and semi-contracted polyps, and a smooth capitulum with numerous folds along the periphery of the disc. The surface of the disc is rough and lacks mucus secretion, distinguishing it from other species in the genus Sarcophyton. The morphological characteristics of the sclerites, including those from the anthocodiae, tentacles, capitulum, and stalk were examined and found to match the descriptions provided by Tixier-Durivault (1958) and Dautova & Savinkin (2013), with some minor differences from the classification key of Verseveldt (1982). Scanning electron microscopy (SEM) was applied to study the surface features of the sclerites, revealing detailed structures such as warts, spines, and granules. Additionally, rDNA ITS2 sequencing was used to identify the coral's algal endosymbionts, which belongs to the genus Symbiodinium, specifically clade C. The nucleotide sequence analysis showed minimal variation among the symbionts, indicating a high degree of similarity within this clade. These findings contribute to the broader understanding of S. serenei and its ecological role in coral reef ecosystems, while also supporting the need for effective conservation and sustainable utilization strategies.

Keywords: Sarcophyton serenei, soft coral, morphological characteristics, sclerite, symbionts clade.

¹Institute of Oceanography, VAST, Vietnam

²Graduate University of Science and Technology, VAST, Vietnam

³Nha Trang Marine Research Station Company Limited, Khanh Hoa, Vietnam

 $^{^4}$ Institute for Biotechnology and Environment, Nha Trang University, Khanh Hoa, Vietnam

^{*}Corresponding author at: Institute of Oceanography, 01 Cau Da, Nha Trang, Khanh Hoa, Vietnam. *E-mail addresses*: huenguyen82@gmail.com

INTRODUCTION

Soft corals are essential to tropical coral reef ecosystems, enhancing biodiversity and providing economic benefits as ornamental species and bioactive compound sources. Accurate species classification ensures sustainable management. The genus *Sarcophyton* (Anthozoa: Octocorallia: Malacalcyonacea: Sarcophytidae) is found in tropical waters, including the Pacific, Indian Oceans, and the Red Sea [1]. In Nha Trang Bay, Vietnam, the diversity of soft corals is recorded with 76 species belonging to 20 genera and 9 families, including the genus Sarcophyton [2].

Sarcophyton serenei, with a mushroom-shaped morphology, is distinct for its large stalk sclerites with pointed ends [3]. It has been recorded in Nha Trang Bay [3–5], Ly Son island [6] and the Suez Gulf [7]. Previous taxonomic studies on the sclerites of *S. serenei* have only provided descriptions and illustrations based on observations using conventional light microscopy [3, 5]. To date, SEM has not been used to examine *S. serenei*, though it offers detailed observation of sclerite morphology, improving taxonomic clarity [1, 8].

Soft corals host Symbiodinium zooxanthellae, divided into seven clades (A-G) based on genetic and physiological traits [9]. Symbiotic clades affect coral adaptation; Sarcophyton species typically associate with clade C, but other clades (A, B, D, F) have been reported [10, 11]. No data exist on S. serenei symbionts. Therefore, in this study, we conducted genetic sequencing of symbiotic algae in the coral, combined with sclerite morphology analysis using traditional morphological descriptions and scanning electron microscopy (SEM). This approach aims to clarify the morphological characteristics of the soft coral Sarcophyton serenei, provide taxonomic data for this species, and enhance our understanding of its symbiotic relationships.

MATERIALS AND METHODS

Coral morphology analysis by external shape

A total of 210 suspected colonies of Sarcophyton serenei were collected by SCUBA

diving at depths of 3–8 m at locations around Hon Cut Chim area in Nha Trang Bay, coordinates 12°15′55.9″N - 109°13′29.3″E and 12°17′11.0″N - 109°13′15.0″E. Corals were photographed by using a Ricoh WG-6 waterproof camera. External descriptions of color, colonies shape, polyps, stalks, and capitulums were documented through underwater photographs based on the classification keywords outlined [3, 5, 12]. At the same time, these coral colonies were also separated into subsamples for morphological analysis and genetic analysis of the symbiotic algae group.

Coral morphology analysis by morphology and size of the sclerites

Morphology of sclerites on optical microscope

Sarcophyton coral colonies were collected and preserved in 70% ethanol. To describe the morphology of sclerites, these sclerites were extracted by dissolving tissues in 10% sodium hypochlorite, followed by rinsing with doubledistilled water [13]. The sclerites were carefully double-distilled washed with water examined under an Olympus BX51 optical microscope. Sclerites from different organs, including polyps (tentacles, anthocodia), caps (surface, interior), and stalks (outer layer, interior), were photographed and measured directly under the microscope using software connected to the microscope camera.

Morphology of sclerites on scanning electron microscope (SEM)

After the coral samples were examined and identified under an optical microscope, the sclerites from the *Sarcophyton serenei* samples (collected from 5 positions as in the optical microscopy examination method: polyps, caps and stalks) were preserved in 70% ethanol and sent to the Ho Chi Minh City Biotechnology Center for morphological analysis using a scanning electron microscope (SEM).

Identification of the Zooxanthellae symbiotic algae clade on corals

15 coral tissue samples collected from the *S. serenei coral colonies* were fixed in 70%

alcohol. The coral tissue samples were cut into small pieces of about 20 mg and the extracted DNA was extracted using the Qiaprep Spin Miniprep kit (Qiagen, Germany) according to the manufacturer's instructions [11]. After extracting total DNA from the samples, the ITS2 gene segment was amplified using two primer pairs: zITSf (5'-CCGGTGAATTATTCGGACTGACG CAGT-3'); ITS4 (5'-TCCTCCGCTTATTGATATGC-3'), PCR reaction conditions: in the reaction mixture including 5 µL 5X My Tag reaction buffer, 0.5 μL My Taq polymerase; 0.5 μL primer zITSf (5'-CCGGTGAATTATTCGGACTGACG CAGT-3'); 0.5 µL ITS4 (5'-TCCTCCGCTTATTGATA TGC-3'), 2 μ L template DNA and 16.5 μ L H₂O solution [14, 15]. PCR products were checked for presence and quality of PCR products on agarose gels stained with 1% ethidium bromide in 1X TBE buffer at 100V, 400A and for 30 minutes. Use DNA Marker 100 bp Plus blue 1,500 bp ladder (GeneOn GmbH, Germany) to determine product size. The size of the PCR product amplifying the 16S rDNA gene will give a band of nearly 700 bp. Sequencing results were displayed and processed using Geneious 8.1 software. **Species** identification was then performed using the **BLAST** program (https://blast.ncsearch bi.nlm.nih.gov/Blast.cgi) to compare with the gene source on Genbank of the National Center for Biotechnology Information (NCBI).

Data processing method

Morphological assessment, sclerites size (length and width) of *S. serenei* were determined using ImageJ. Species identification and phylogenetic analysis of the symbiotic algae clade associated with the coral were conducted using Geneious 8.1 and BLAST software.

RESULTS AND DISCUSSION

Morphological characteristics of coral

External morphology of coral

A total of 210 soft coral colony specimens collected from Nha Trang Bay were examined for external morphology and sclerites to classify and identify the species Sarcophyton serenei. After comparing and examining the sclerites, 35 colonies were classified with recorded external morphology belonging to the species S. serenei (accounting for 16.67%) with 2 different color patterns. Of which, the bright yellow-brown color accounted for the majority at 82.85% and gravbrown color represented 17.14%. The results of the classification of external morphology of S. serenei are recorded in Figure 1, Table 1.

Figure 1. Morphology of S. serenei. (a) polyps with extension; (b) polyps are not contracted

The external morphology of *S. serenei coral* includes some detailed characteristics according to Table 1. Natural corals are bright yellow-brown or gray-brown, but after being transferred to indoor tanks, they turn brown. This suggests that the coral's color can change according to the living environment. Corals

living in tanks with a water level of about 40–50 cm, experience higher light levels compared to the ocean. This difference in light intensity may cause the symbiotic algae to adapt to the new conditions, potentially altering their photosynthesis and chlorophyll content, so the color of corals can be affected.

Table 1. Some external morphological characteristics of soft coral S. serenei in studies

Characteristic	Tixier-Durivault (1958) [3]	Verselveldt (1982) [12]	Dautova & Savinkin (2013) [5]	This study
Capitulum diameter (cm)	13–24	18		17–20
Stalk diameter	10 cm			10–12 cm
Distance of				2–4 mm; 6–8
autozooids, number	4 mm;	2–4 mm;	6–8 siphonozoids	siphonozooids (near);
of siphonozooids;	8–10 siphonozoids	6–7 siphonozoids	0-6 SIPHOHOZOIUS	8–10 siphonozoids
Cap center				(distal)
Cap edge	2.0 mm;	1.5-2.0 mm;	1–3 siphonozoid	1.5-2.0 mm;
	1–2 siphonozoid	1–2 siphonozoid		1–2 siphonozoid
				Bright yellow brown HEX
Color	brown		yellow-gray, the	color # 9c8162, RGB
			upper part of the	(156,129,98); CMYK
			polyp is light	(0,17,37,39); gray brown
			beige.	HEX color # b9aba8, RGB
				(185,171,168)
Polyp	Almost no retraction	Most do not		Short, not fully retracted.
characteristics	inwards	retraction inward		Pale white, remaining
Characteristics	iliwalus	Tetraction inward		unexpanded
Polyp height	about 6 mm	about 6 mm		5.76 ± 0.195 mm
	Smooth in the middle		funnel-shaped,	not round, there are
Cap features	and has little folded		thin disc edges	many folds around
	at the edge of disc		with many folds	the margins
Stalk features	Low, wide			Short and wide stalk
				with no definite shape

The distance between two autozooids in the center and the edge of the disc was observed (Fig. 2). The distance between the autozooids in the central of the capitulum is 2–4 mm, and the number of siphonozooids varies depending on the criteria used. The nearest and farthest autozooids have 6–8 and 8–10 siphonozooids, respectively. At the cap edge, the distance is only 1–2 siphonozooids. Verselveldt (1982), suggested that the distance between autozooids and the number of siphonozooids near the margin are not taxonomically significant [12]. However, in the

central part of the disc, they may serve as a criterion for classification. Additionally, the measurement of the distance between autozooids lacks standardized or consistent guidelines; hence, calculating the number of siphonozooids is always an approximation [12]. According to the classifications by Tixer-Durivault (1958) and Verselveldt (1982), there was a difference in the number of siphonozooids at the center of the disc, with 8–10 siphonozooids [3] and 6–7 siphonozooids [12]. Therefore, we propose that determining the distance between two autozooids should

be based on the distance between the two closest autozooids.

The height of the anthocodia of the polyp of *S. serenei* is about 4-6 mm (5.76 \pm 0.195 mm), which is significantly shorter than

those of the soft coral *Sarcophyton glaucum* (which can be up to 2–3 cm long [12]. Notably, the autozooids do not fully retract and the polyp tentacles are pale white, remaining unexpanded.



Figure 2. Autozooids and siphozooids at the capitulum margin and center of *S. serenei*. (a) cap center; (b) at the cap margin; (c) anthocodia

In terms of external morphology, color, and polyp characteristics of the coral *S. serenei* in this study are generally similar to the taxonomic features described [3, 5, 12]. However, the number of siphonozooids between autozooids at the center of the coral's disc in the studied varies depending on the method of determination. It may be fewer [5, 12] or more, which would be similar to the Tixier-Durivault's (1958) classification [3].

Characteristics of coral sclerites by optical microscope

Sarcophyton soft corals, sclerites are observed in 05 main positions: the surface layer of the stalk, the stalk interior, the surface of the disc, the disc interior and the polyps. In which, the shape and size of each sclerites at these position are important criteria for classifying species of soft coral, particularly Sarcophyton serenei.

The arrangement and size of the sclerites on the coral polyps anthocodia also vary depending on the species. The anthocodia sclerites are rod-shaped and relatively long, reaching up to 0.6 mm, and they are tightly arranged in a V-shaped pattern. Near the polyp

tentacles, they become shorter, smoother, and aligned horizontally. The anthocodia sclerites in this study are longer than those described in the Verselveldt's (1982) classification (about 0.4 mm) [12].

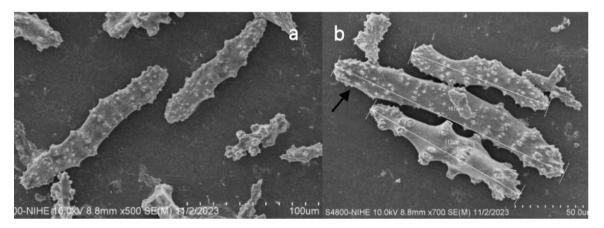
The surface layer of the capitulum contains two types of club-like clerites: Type 1 consists of very small, club-shaped clerites with a constriction at the head and handle of the sclerite, measuring from 0.05-0.098 mm $(0.074 \pm 0.024 \text{ mm})$, the club heads are not smooth but has a spiny, angular shape that protrudes like a volcanic cone, which is a prominent feature of the coral S. serenei. The other type is larger club-like clerites, measuring 0.20 ± 0.035 mm in length, without a constriction in the middle. One end of the club is larger leafshaped, while the other end is pointed, featuring flattened, volcanic-shaped parts. The size and shape of the small clubs are quite similar to the Verselveldt's (1982) classification (from 0.06-0.10 mm) [12], however, the large clubs are shorter in length than the classification key (0.38 mm). Inside the cap, the clerites are needles-like, with pointed or slightly curved heads with larger needle, mainly measuring from $0.5-0.6 \text{ mm} (0.51 \pm 0.07 \text{ mm})$. Some are clubshaped with one large end and one pointed end.

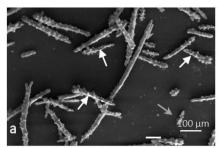
The sclerites in the surface layer of the stalk have a shape similar to those in the capitulum surface but are slightly larger (0.12 ± 0.05 mm). The spicules in the stalk are particularly special is a distinguishing feature from other Sarcophyton species. These sclerites are straight or curved pointed spindles, very long up to 1.22 ± 0.17 mm (the majority of sclerites are approximately 1.2 mm long) and 0.22 ± 0.00 mm wide. Compared to S. glaucum, there are also large in the stalk spicules ranging from 1.3 to 2.3 mm long, up to 2.60 mm, but the width of this spicules is narrower than that of S. serenei. Additionally, these sclerites of S. glaucum can be branched [12], whereas those of S. serenei are thicker and straighter. Moreover, on the surface of S. serenei stalk sclerites features shorter and rougher warts than those of S. glaucum. Overall, this classification of coral based on Verselveldt's (1982) description has confirmed the presence of all types of sclerites, however. there are also differences. A newly identified sclerite type was found, characterized by a pointed, elongated body with simple and less

rough warty projections. That is, a type of spindles simple warts with little roughness, located at the junction between the covering and the interior of the stalk (0.61 \pm 0.04 mm). This sclerite is not described in Verselveldt's (1982) classification [12]. Comparing these sclerite characteristics with those described of Tixer-Durivault (1958) and Dautova & Savinkin (2013) is completely similar. This type of sclerite was mentioned in their works, but its size was not reported [3, 5].

Characteristics of coral sclerites by scanning electron microscopy (SEM)

Similar to observations under a light microscope, SEM imaging also revealed all types of sclerites at the five locations of the coral. In the coral-polyp tentacle, the sclerites have a flattened scale, slightly curved, 0.106 ± 0.029 mm in length (Fig. 3a). In anthocodia, the sclerites are rod-shaped (0.29 ± 0.028 mm) (Fig. 3b - black arrow). These sclerites size are similar to the previous classifications [5, 12].




Figure 3. Sclerites in S. serenei polyps. (a) in tentacles; (b) in anthocodia

In the descriptions by Verseveldt (1982), the coral disc surface contains two types of of club-shaped sclerites, one end was leaf-shaped, with a rough, volcanic surface and the other end was smoother [12]. SEM images also reveal the same two types of spicules on the disc surface, consistent with the findings observed under the light microscope. The longer club without a

constriction, with a non-smooth shaft and warts at the head were clearly observed in the SEM images (Figs. 4a, 4b). The small clubshaped sclerites measure approximately 0.089 \pm 0.011 mm in length, while the larger club-shaped spicules have a length of 0.24 \pm 0.05 mm. The small club were approximately 0.089 \pm 0.011 mm in length, while the larger club were 0.24 \pm 0.05 mm in length. The

interior of the capitulum, the sclerites are straight or slightly curved, taking the form of rods and needles. Most are straight needle sclerites (0.4–0.5 mm). However, we recorded some needle with lengths reaching

up to approximately 0.6 mm (Fig. 4c). This is quite similar to the Tixier-Durivault's (1958) and Verselveldt's (1982) descriptions, which reported lengths of 0.4 mm and 0.5 mm, respectively.

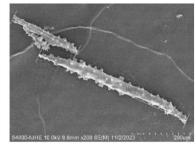
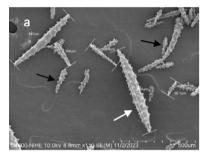
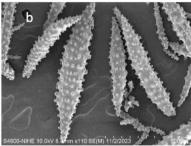




Figure 4: SEM images of sclerites on the disc surface of *S. serenei* coral. a, b: small club (black arrow) and large club (white arrow); c: inside the coral capitulum

In the outer layer of the stalk, the sclerites are club-shaped with a constriction in the middle and with warts on the surface (similar to those found in the cap surface), with a length of 0.15 \pm 0.08 (Fig. 5a, black arrow). Compared to other

description, these sclerites are quite similar to this result (0.06-0.16 mm and up to 0.23 mm long) [12]. However, according to Dautova & Savinkin (2013), these club-shaped sclerites can be up to 0.45 mm long [5].

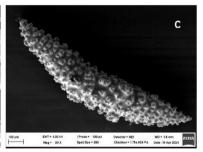


Figure 5. Sclerites in coral stalk. (a) club-shaped sclerites in the stalk outer layer (black arrow), spindles at the junction between the covering and the interior (white arrow); (b, c) in the stalk

The sclerites inside the stalk are quite distinct from those at other locations (Figs. 5b, 5c). These are pointed, straight, or slightly curved spindles, approximately 1.20 mm long (99.41 \pm 15.82 μ m), 0.28 \pm 0.31 mm in width, and covered with small, irregular warts (Fig. 5c). Compared to other classifications of *S. serenei*, these spindles were described up to 1.7 mm [12] and 1.5 mm long [5], and 0.32 mm wide, but in our study we did not observe spindles reaching these lengths. However, the results of sclerites analysis in this study align with Tixier-Durivault's (1958) findings,

indicating that sclerites within the stalk measure approximately 1.2 mm long and 0.26 mm wide [3]. Additionally, besides the distinctive large sclerites within the coral stalk, pointed, elongated spindles with less rough warts were also found, as described in the light microscopy analysis. As mentioned, these sclerite were not included in the taxonomic Verselveldt's (1982) description [12], but previous classifications have described this type of sclerite, providing descriptions but without specifying exact dimensions [3, 5]. SEM imaging revealed that these sclerite (0.68 ± 0.08 mm)

and located at the junction between the stalk's surface layer and its interior (Fig. 5a, white arrow). The bumps on these sclerites are sharp and less rugged compared to those on the sclerites found deeper within the stalk.

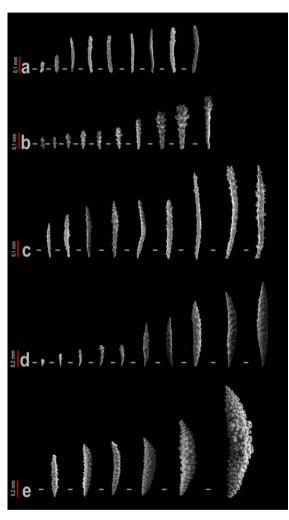


Figure 6. Sarcophyton serenei sclerites imaged by scanning electron microscopy-SEM. (a) sclerites in the tentacles, anthocodia of poplyp; (b) disc surface; (c) interior the disc; (d) stalk outer layer; (e) stalk interior

Through the examination and analysis of over 210 samples of the soft coral *Sarcophyton*, the classification of *S. serenei* has been compiled, with a description of its sclerites under scanning electron microscopy (SEM), as shown in Figure 6. This is the first data on the classification of *S. serenei* at the SEM image

level, contributing a small part to the coral species classification information data. Overall, the sclerites samples of *S. serenei* in this study have some common observations regarding the quantity and morphology consistent with the classifications [3, 5, 12]. Notably, the morphological characteristics of *S. serenei* sclerites identified in this study closely resemble those described in previous research [3, 5], with minor differences from the other classification [12].

Symbiotic algae layer with soft coral *S. serenei*

S. serenei coral samples identified through morphological examination were sent for sequencing of the symbiotic algae gene segment to identify the group of algae symbiotic with this coral. Through analysis using Geneious 8.1 software and species identification using the BLAST program (https://blast.ncbi.nlm.nih.gov/Blast.cgi), the symbiotic algae gene sequences on NCBI's Genbank were compared and a phylogenetic tree of the symbiotic algae on the soft coral S. serenei was constructed (Fig. 7).

Phylogenetic analysis of the symbiotic algal samples showed that the NTS1, NTS2 and NTS3 symbiotic algal samples had 100% genome homology with each other, while the NTS9-NTS13 and NTS8-NTS10 pairs also showed 100% homology. In general, the NTS1 to NTS15 symbiotic algal samples had almost identical ITS2 gene sequences, differing only a few nucleotide pairs, with homology ranging from 98.24-99.80%. The obtained gene sequences identified as belonging to the Symbiodinium clade C group. In particular, the NTS1-NTS3 samples had 100% homology with the Symbiodinium sp. C90 strain (AF427469) isolated from the hard coral Montipora verrucosa [20]. In addition, samples NTS8 and NTS10 had 99.80% similarity with C90 (AF427469) and 99.61% similarity with Symbiodinium sp. C90 (EU828670) isolated from foraminifera [22]. The sequencing results in this study are consistent with studies on coral species of the genus Sarcophyton from various geographical regions, where the majority of symbiotic algae were identified as

belonging to clade C [23–30]. However, studies on *S. glaucum* have detected the presence of

symbiotic algae belonging to clades B, C, D, E [11] or clade A [10, 31].

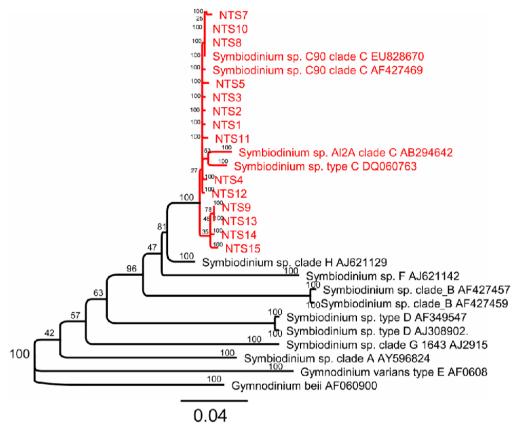


Figure 7. Phylogenetic diagram constructed by the Maximum Likelihood-ML method based on the rDNA ITS2 of Symbiodinium strains. The reference branches belong to the AH clade [16–21] and an outgroup organism (Gymnodinium beii) was used as the outgroup in the analysis (GenBank accession number is shown in the figure). Numbers at the nodes represent bootstrap values from 100 replicates and Bayesian posterior probabilities (in percentages). Species shown in bold red are the samples sequenced in this study

The results of the study using the ITS2 gene in this study showed that symbiotic algae belonging to the *Symbiodinium* clade C group were dominant in coral samples collected from Nha Trang sea. Compared to previous studies, clade C was also commonly recorded on coral reefs in other tropical seas such as the Pacific, Indian Ocean and Caribbean Sea when using the ITS2 marker [27, 32]. However, other molecular markers such as 18S rRNA, cp23S, or psbA have also been widely used to assess the diversity and phylogenetic relationships of *Symbiodinium*. The 18S rRNA marker was used to identify *S. goreaui* in Cu Lao Cham, giving

similar results on the dominance of clade C on soft corals [33]. In addition, cp23S and psbA markers, commonly used to study the physiological properties and thermal tolerance of symbiotic algae, have shown that some subspecies of clade C, such as C3 and C15, are more heat tolerant when compared to other algal groups [34, 35]. This adds further evidence for the adaptive role of clade C under tropical environmental conditions and climate change. In other tropical regions such as the Great Barrier Reef, shift of symbionts from clade C to clade D under high temperature conditions using ITS2 and cp23S as markers

[36]. This is an important demonstration of the adaptive capacity of corals through disturbance of symbiotic algal communities. The results of this study in Nha Trang waters, combined with studies using various markers, further clarify the prevalence of clade C and its role in the environmental adaptability of corals.

In order to accurately determine the phylogenetic relationships of Symbiodinium symbiotic algal lineages in addition to the ITS2 marker, it is necessary to combine other molecular markers such as the 18S rRNA gene and cp23S from the chloroplast genome to classify and clarify the evolutionary relationships at the clade and species levels. Markers such as psbA and rbcL have also been effective in studying ecological adaptation and distinguishing symbiotic algal under different environmental lineages In addition, whole genome conditions. sequencing (WGS) and RNA-seq studies will provide comprehensive information on the genome and functional gene expression, thereby improving the resolution of the phylogenetic tree. In addition, the application of microsatellite markers can help assess genetic diversity at the lineage level within the same symbiotic algal clade. Combining Bayesian and Maximum Likelihood (ML) analysis with various markers will improve the reliability phylogenetic analysis. Finally, studies of adaptive gene expression under environmental stress conditions such as high temperature or high light will shed light on the evolutionary role and adaptive capacity of Symbiodinium lineages, contributing to a better understanding of the symbiotic relationship between algae and corals.

The results of this study have important implications for the conservation of corals and tropical marine ecosystems. The identification of symbiotic algal strains belonging to clade C and the high level of similarity between samples contribute to a better understanding of the genetic diversity of *Symbiodinium* in Nha Trang waters. This provides a scientific basis for assessing the adaptive capacity of coral communities to the pressures of climate change, especially temperature increases and coral bleaching. Specifically, symbiotic algal clades such as clade C are able to adapt to

different temperature and light ranges, while clade D shows better heat tolerance, helping corals survive in harsh environmental conditions. Therefore. detecting monitoring the presence of heat-sensitive and heat-tolerant symbiotic algal groups can help predict the resilience of local coral reefs when heat stress occurs. In addition, the genetic information obtained from this study can be used to develop conservation strategies such as breeding coral species that are able to live with heat-tolerant algae, thereby increasing the resilience of coral reefs. At the same time, expanding the study with other molecular markers and combining it with metagenomics technology will further clarify the relationship between corals and symbiotic algae, supporting coral reef restoration programs and sustainable conservation of marine biodiversity.

CONCLUSION AND RECOMMENDATIONS

Conclusion

The soft coral Sarcophyton serenei in this study has some external morphological characteristics, such as bright yellow-brown to gray-brown, with the cap having numerous folds at the periphery and smooth at the center. The surface of the cap is rough and does not secrete mucus. The distance between the autozooids in the central region is 2-4 mm, and the number of siphonozooids varies depending on the criteria used. The nearest and farthest autozooids have 6-8 and 8-10 siphonozooids, respectively. At the capitulum edge, the distance is 1-2 siphonozooids. The coral polyp is short (4–6 mm) and does not fully retract. The morphological characteristics of sclerites, according to the classification methods of Tixier-Durivault (1958), Verselveldt (1982) and Dautova & Savinkin (2013) have identified various types of sclerites across five organs, providing clearer images descriptions of the species under optical microscopy and the first scanning electron microscope (SEM) images. The main diagnostic feature of S. serenei is the straight spindles in the stalk, which are large in both length and

width (over 1.2 mm long and over 0.3 mm wide), small warts on the sclerites's surface. Additionally, SEM images of sclerite at the junction between the outer layer and in the stalk, which was missing in Verselveldt's (1982) classification.

The rDNA-ITS2 sequences of the symbiotic algae have been identified as *Symbiodinium* sp., showing similarities belonging to clade C.

Recommendations

Currently, the classification of the soft coral Sarcophyton serenei still relies on traditional morphological taxonomy, which may outdated. Additionally, potential morphological variations of this species could lead to misidentification. Therefore, genomic sequencing studies are necessary to achieve a more accurate and efficient classification of this coral species. Furthermore, research on the morphological characteristics of S. serenei in different geographic regions should conducted to better understand its adaptability and morphological variations.

In further research, it is recommended to combine the use of ITS2 marker and many other types of molecular markers such as 18S rRNA gene and cp23S, psbA and rbcL or other methods (whole genome sequencing (WGS) and RNA-seq) to classify and clarify the evolutionary relationship at the branch level and comprehensive information on the genome and functional gene expression, thereby improving the resolution of the phylogenetic tree. At the same time, it is a modern tool to warn about the health status of coral reefs as well as in the restoration and conservation of marine biodiversity.

Acknowledgements: The data used for this article are the results of the 2023–2024 Museum Mission "Some characteristics of morphology, ecology and growth of soft coral Sarcophyton serenei in Nha Trang Bay" and the project of the Vietnam Academy of Science and Technology, grant no. TDDTMT.01/24–26. Also, this study is a part of the doctoral thesis by PhD student Ho Son Lam. Finally, we would also like to express our sincere gratitude to Dr.

Do Huu Hoang for his valuable feedback, which greatly contributed to improving this article.

Disclaimer: We hereby declare that the results presented in this study were obtained from research conducted by the authors.

REFERENCES

- [1] P. Alderslade, "Six new genera and six new species of soft corals, and some proposed familial and subfamilial changes within Alcyonacea (Coelenterata: Octocorallia)," Bulletin of the Biological Society of Washington, vol. 10, pp. 15–65, 2001.
- [2] H. X. Ben, H. T. Tuyen, P. K. Hoang, N. V. Long, and V. S. Tuan, "The status, trend and recovery potential of coral reef biodiversity in Nha Trang Bay," *Collection of Marine Research Works*, vol. 21, no. 2, pp. 176–187, 2015. [in Vietnamese].
- [3] A. Tixier-Durivault, "Révision de la famille des Alcyoniidae: les genres *Sarcophytum* et *Lobophytum*," *Zoologische Verhandelingen*, vol. 36, no. 1, pp. 1–179, 1958.
- [4] T. N. Dautova, "Biodiversity of soft corals Alcyoniidae (Cnidaria: Octocorallia) and their taxonomy problem," in Proceedings of the Workshop: Coastal Marine Biodiversity and Bioresources of Vietnam and Adjacent Areas to the South China Sea, 2011, pp. 28–32.
- [5] T. N. Dautova and O. V. Savinkin, Octocorallia: Alcyoniidae. Benthic Fauna of the Bay of Nha Trang, Southern Vietnam, vol. 3. Moscow, Russia: KMK, 2013, 271 p.
- [6] H. X. Ben and T. N. Dautova, "Soft corals (Octocorallia: Alcyonacea) in Ly Son islands, the central of Vietnam," Vietnam Journal of Marine Science and Technology, vol. 10, no. 4, pp. 39–49, 2010.
- [7] J. Verseveldt and Y. Benayahu, "On two old and fourteen new species of Alcyonacea (Coelenterata, Octocorallia) from the Red Sea," Zoologische Verhandelingen, vol. 208, no. 1, pp. 1–33, 1983.
- [8] M. Grasshoff, "The gorgonians of the Sinai coast and the strait of Gubal, Red Sea (Coelenterata, Octocorallia)," Courier

- Forschungsinstitut Senckenberg, vol. 224, pp. 1–125, 2000.
- [9] T. C. LaJeunesse, J. E. Parkinson, P. W. Gabrielson, H. J. Jeong, J. D. Reimer, C. R. Voolstra, and S. R. Santos, "Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts," *Current Biology*, vol. 28, no. 16, pp. 2570–2580, 2018. DOI: 10.1016/j.cub.2018.07.008.
- [10] D. Jahajeeah, V. Bhoyroo, and M. Ranghoo-Sanmukhiya, "A review of soft corals (Octocorallia: Alcyonacea) and their symbionts: Distribution of clades and functionality," Western Indian Ocean Journal of Marine Science, vol. 19, no. 1, pp. 123–141, 2020, DOI: 10.4314/wiojms. v19i1.10.
- [11] S. Aratake, T. Tomura, S. Saitoh, R. Yokokura, Y. Kawanishi, R. Shinjo, J. D. Reimer, J. Tanaka, and H. Maekawa, "Soft coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) species diversity and chemotypes," *PLoS One*, vol. 7, no. 1, e30410, 2012. DOI: 10.1371/journal.pone. 0030410.
- [12] J. Verseveldt, "A revision of the genus Sarcophyton Lesson (Octocorallia, Alcyonacea)," Zoologische Verhandelingen, vol. 192, no. 1, pp. 1–91, 1982.
- [13] F. M. Bayer, M. Grasshoff, and J. Verseveldt, Eds., *Illustrated trilingual glossary of morphological and anatomical terms applied to Octocorallia*. Leiden, The Netherlands: Brill Archive, 1983, 75 p.
- [14] R. Rowan and D. A. Powers, "Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae)," Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 8, pp. 3639–3643, 1992. DOI: 10.1073/pnas.89.8.3639.
- [15] C. L. Hunter, "The utility of ITS sequences in assessing relationships among zooxanthellae and corals," in *Proceedings of the 8th International Coral Reef Symposium*, vol. 2, pp. 1599–1602, 1997.
- [16] T. P. Wilcox, "Large-subunit ribosomal RNA systematics of symbiotic dinoflagellates: morphology does not recapitulate

- phylogeny," *Molecular Phylogenetics and Evolution*, vol. 10, no. 3, pp. 436–448, 1998. DOI: 10.1006/mpev.1998.0546.
- [17] X. Pochon, J. Pawlowski, L. Zaninetti, and R. Rowan, "High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans," *Marine Biology*, vol. 139, no. 6, pp. 1069–1078, 2001. DOI: 10.1007/s002270100674.
- [18] W. K. Loh, T. Loi, D. Carter, and O. Hoegh-Guldberg, "Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species *Seriatopora hystrix* and *Acropora longicyathus* in the Indo-West Pacific," *Marine Ecology Progress Series*, vol. 222, pp. 97–107, 2001. DOI: 10.3354/meps222097.
- [19] J. Pawlowski, M. Holzmann, J. F. Fahrni, X. Pochon, and J. J. Lee, "Molecular identification of algal endosymbionts in large miliolid foraminifera: 2. Dinoflagellates," *Journal of Eukaryotic Microbiology*, vol. 48, no. 3, pp. 368–373, 2001. DOI: 10.1111/j.1550-7408.2001. tb00326.x.
- [20] S. R. Santos, D. J. Taylor, R. A. Kinzie III, M. Hidaka, K. Sakai, and M. A. Coffroth, "Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences," *Molecular Phylogenetics and Evolution*, vol. 23, no. 2, pp. 97–111, 2002. DOI: 10.1016/S1055-7903(02)00010-6.
- [21] R. Moore, Culturing and population genetic analyzes of Symbiodinium from selected invertebrate hosts of the Great Barrier Reef, Ph.D. thesis, Univ. of Sydney, 2004.
- [22] S. A. Fay, M. X. Weber, and J. H. Lipps, "The distribution of *Symbiodinium* diversity within individual host foraminifera," *Coral Reefs*, vol. 28, no. 3, pp. 717–726, 2009. DOI: 10.1007/s00338-009-0511-y.
- [23] L. Shinkarenko, *The natural history of five species of octocorals (Alcyonacea): with special reference to reproduction, at Heron Island Reef, Great Barrier Reef*, Ph.D. dissertation, Univ. of Brisbane, 1982.

- [24] Y. Benayahu and Y. Loya, "Life history studies on the Red Sea soft coral *Xenia macrospiculata* Gohar, 1940. I. Annual dynamics of gonadal development," *Biological Bulletin*, vol. 166, no. 1, pp. 32–43, 1984. DOI: 10.2307/1541428.
- [25] O. Barneah, V. M. Weis, S. Perez, and Y. Benayahu, "Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters," *Marine Ecology Progress Series*, vol. 275, pp. 89–95, 2004. DOI: 10.3354/meps275089.
- [26] T. L. Goulet, C. Simmons, and D. Goulet, "Worldwide biogeography of *Symbiodinium* in tropical octocorals," *Marine Ecology Progress Series*, vol. 355, pp. 45–58, 2008. DOI: 10.3354/meps07214.
- [27] T. C. LaJeunesse, W. K. Loh, R. Van Woesik, O. Hoegh-Guldberg, G. W. Schmidt, and W. K. Fitt, "Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean," *Limnology and Oceanography*, vol. 48, no. 5, pp. 2046–2054, 2003. DOI: 10.4319/lo.2003.48.5. 2046.
- [28] M. J. H. Van Oppen, J. C. Mieog, C. A. Sanchez, and K. E. Fabricius, "Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships," *Molecular Ecology*, vol. 14, no. 8, pp. 2403–2417, 2005. DOI: 10.1111/j.1365-294X.2005.02545.x.
- [29] P. W. Sammarco and K. B. Strychar, "Responses to high seawater temperatures in zooxanthellate octocorals," *PLoS One*, vol. 8, no. 2, e54989, 2013. DOI: 10.1371/ journal.pone.0054989.
- [30] P. W. Sammarco and K. B. Strychar, "Responses to high seawater temperatures in zooxanthellate octocorals," *PLoS One*, vol. 8, no. 2, e54989, 2013. DOI: 10.1371/journal.pone.0054989.
- [31] A. A. Carlos, B. K. Baillie, M. Kawachi, and T. Maruyama, "Phylogenetic position of Symbiodinium (Dinophyceae) isolates from tridacnids (Bivalvia), cardiids (Bivalvia), a sponge (Porifera), a soft coral

- (Anthozoa), and a free-living strain," *Journal of Phycology*, vol. 35, no. 5, pp. 1054–1062, 1999. DOI: 10.1046/j.1529-8817.1999.3551054.x.
- [32] E. M. Sampayo, T. Ridgway, P. Bongaerts, and O. Hoegh-Guldberg, "Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 105, no. 30, pp. 10444–10449, 2008. DOI: 10.1073/pnas.0708049105.
- [33] Dang Diem Hong, Pham Van Nhat, Hoang Thi Huong Quynh, Luu Thi Tam, Ngo Thi Hoai Thu, Nguyen Cam Ha, Hoang Thi Lan Anh, Nguyen Hoai Nam, Nguyen Thi Minh Hang, and Chau Van Minh, "Study on biocharacteristics of *Symbiodinium* sp. isolated from soft coral in coastal water of Quang Nam, south central Vietnam," *Academia Journal of Biology*, vol. 39, no. 3, pp. 367–375, 2017. DOI: 10.15625/0866-7160/v39n3.10112.
- [34] B. C. Hume, C. R. Voolstra, C. Arif, C. D'Angelo, J. A. Burt, G. Eyal, Y. Loya, and J. Wiedenmann, "Ancestral genetic diversity associated with the rapid spread of stresstolerant coral symbionts in response to Holocene climate change," *Proceedings of the National Academy of Sciences*, vol. 113, no. 16, pp. 4416–4421, 2016.
- [35] M. Stat and R. D. Gates, "Clade D Symbiodinium in scleractinian corals: a 'nugget' of hope, a selfish opportunist, an ominous sign, or all of the above?," *Journal of Marine Sciences*, vol. 2011, no. 1, 730715, 2011. DOI: 10.1155/2011/730715.
- [36] R. Berkelmans and M. J. Van Oppen, "The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change," Proceedings of the Royal Society B: Biological Sciences, vol. 273, no. 1599, pp. 2305–2312, 2006. DOI: 10.1098/rspb. 2006.3567.