Cyclic dipeptide, furan, furanone, and butenolide derivatives from marine-derived fungus Aspergillus sp. HL24
Cyclic dipeptide, furan, furanone, and butenolide derivatives from marine-derived fungus Aspergillus sp. HL24
Author affiliations
DOI:
https://doi.org/10.15625/1859-3097/23413Keywords:
Aspergillus, marine-derived fungus, cytotoxic activityAbstract
Using various chromatographic experiments, one cyclic dipeptide (1), one furan (2), one pyranone (3) and two butenolide (4 and 5) derivatives were isolated from the marine-derived fungus Aspergillus sp. HL24. Their chemical structures were elucidated on the basis of detailed analysis of the 1D (1H NMR and 13C NMR) and 2D (HSQC and HMBC) NMR spectroscopic data in comparison with the literature values. The cytotoxic activities of compounds 1–5 were evaluated on two human cancer cell lines as Hep-G2 (liver) and A549 (lung). However, these compounds did not show significant cytotoxicity (IC50 > 100 µM) against both cell lines.
Downloads
References
[1] G. M. König, S. Kehraus, S. F. Seibert, A. Abdel-Lateff, and D. Müller, “Natural products from marine organisms and their associated microbes,” ChemBioChem, vol. 7, no. 2, pp. 229–238, 2006.
[2] C. J. Pearce, “Review of new and future developments in microbial biotechnology and bioengineering: Aspergillus system properties and applications,” Journal of Natural Products, vol. 82, no. 4, pp. 1051–1051, 2019.
[3] R. Orfali, M. A. Aboseada, N. M. Abdel-Wahab, H. M. Hassan, S. Perveen, F. Ameen, E. Alturki, and U. R. Abdelmohsen, “Recent updates on the bioactive compounds of the marine-derived genus Aspergillus,” RSC Advances, vol. 11, no. 28, pp. 17116–17150, 2021.
[4] N. T. Ngoc, T. H. Quang, T. T. H. Hanh, N. X. Cuong, V. T. Quyen, N. T. T. Ngan, D. V. Ha, N. H. Nam, and C. V. Minh, “Cytotoxic and antimicrobial metabolites from the marine-derived fungus Aspergillus sp. OPR23-FS01,” Phytochemistry Letters, vol. 61, pp. 29–34, 2024.
[5] D. V. Anh, T. H. Quang, N. T. Ngoc, T. T. H. Hanh, N. X. Cuong, N. T. T. Ngan, N. N. Tung, N. H. Nam, and C. V. Minh, “Fumigaclavines K−M, undescribed ergot alkaloids from the mangrove-derived fungus Aspergillus sp. DVXT-221 with cytotoxic and NO inhibitory activities,” Tetrahedron, vol. 171, 134414, 2025.
[6] N. T. Ngoc, L. T. Vien, T. T. H. Hanh, N. X. Cuong, N. H. Nam, and C. V. Minh, “Chemical constituents of a marine-derived fungus Aspergillus sp. HL24 and their cytotoxic activity,” Tetrahedron, vol. 184, 134778, 2025.
[7] R. R. Parvatkar, C. D'Souza, A. Tripathi, and C. G. Naik, “Aspernolides A and B, butenolides from a marine-derived fungus Aspergillus terreus,” Phytochemistry, vol. 70, no. 1, pp. 128–132, 2009.
[8] J. Long, Y. Chen, W. Chen, J. Wang, X. Zhou, B. Yang, and Y. Liu, “Cyclic peptides from the soft coral-derived fungus Aspergillus sclerotiorum SCSIO 41031,” Marine Drugs, vol. 19, no. 12, 2021.
[9] B. Yang, J. Dong, X. Zhou, X. Yang, K. J. Lee, L. Wang, S. Zhang, and Y. Liu, “Proline-containing dipeptides from a marine sponge of a Callyspongia species,” Helvetica Chimica Acta, vol. 92, no. 6, pp. 1112–1117, 2009.
[10] K. Xu, C. Guo, D. Shi, J. Meng, H. Tian, S. Guo, “Discovery of Natural Dimeric Naphthopyrones as Potential Cytotoxic Agents Through ROS-Mediated Apoptotic Pathway,” Marine Drugs, vol. 17, no. 4, 2019.
[11] D. Schulz, B. Ohlendorf, H. Zinecker, R. Schmaljohann, and J. F. Imhoff, “Eutypoids B-E produced by a Penicillium sp. strain from the North Sea,” Journal of Natural Products, vol. 74, no. 1, pp. 99–101, 2011.
[12] T. Furukawa, T. Fukuda, K. Nagai, R. Uchida, and H. Tomoda, “Helvafuranone Produced by the Fungus Aspergillus nidulans BF0142 Isolated from Hot Spring-derived Soil,” Natural Product Communications, vol. 11, no. 7, pp. 1001–1003, 2016.
[13] A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo, and M. Boyd, “Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines,” Journal of the National Cancer Institute, vol. 83, no. 11, pp. 757–766, 1991.
[14] N. X. Cuong, L. T. Vien, T. T. Hanh, N. P. Thao, D. T. Thao, N. V. Thanh, N. H. Nam, C. Thung do, P. V. Kiem, and C. V. Minh, “Cytotoxic triterpene saponins from Cercodemas anceps,” Bioorganic & Medicinal Chemistry Letters, vol. 25, no. 16, pp. 3151–3156, 2015.
[15] M. J. Kim, D.-C. Kim, J. Kwon, S. M. Ryu, H. Kwon, Y. Guo, S.-B. Hong, Y.-C. Kim, H. Oh, and D. Lee, “Anti-inflammatory metabolites from Chaetomium nigricolor,” Journal of Natural Products, vol. 83, no. 4, pp. 881–887, 2020.
[16] R. Jadulco, P. Proksch, V. Wray, Sudarsono, A. Berg, and U. Gräfe, “New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum,” Journal of Natural Products, vol. 64, no. 4, pp. 527–530, 2001.
[17] W. F. Xu, R. Chao, Y. Hai, Y. Y. Guo, M. Y. Wei, C. Y. Wang, and C. L. Shao, “17-Hydroxybrevianamide N and its N1-methyl derivative, quinazolinones from a soft-coral-derived Aspergillus sp. fungus: 13S enantiomers as the true natural products,” Journal of Natural Products, vol. 84, no. 4, pp. 1353–1358, 2021.
[18] F. Zhang, L. Yang, Q. Y. Xie, J. C. Guo, Q. Y. Ma, L. T. Dai, L. M. Zhou, H. F. Dai, F. D. Kong, D. Q. Luo, and Y. X. Zhao, “Diverse indole-diterpenoids with protein tyrosine phosphatase 1B inhibitory activities from the marine coral-derived fungus Aspergillus sp. ZF-104,” Phytochemistry, vol. 216, 113888, 2023.
[19] J. Long, X. Pang, X. Lin, S. Liao, X. Zhou, J. Wang, B. Yang, and Y. Liu, “Asperbenzophenone A and versicolamide C, new fungal metabolites from the soft coral derived Aspergillus sp. SCSIO 41036,” Chemistry and Biodiversity, vol. 19, no. 3, e202100925, 2022.
[20] Q. Peng, Y. Ye, Q. Cao, J. She, Y. Liu, X. Zhou, X. Pang, and Y. Liu, “Prenylated xanthones from the coral-derived fungus Aspergillus stellatus SCSIO41406 and their antibacterial activities,” Natural Product Research, 2025.
[21] X. Wei, F. T. Wang, M. X. Si-Tu, H. Fan, J. S. Hu, H. Yang, S. Y. Guan, L. K. An, and C. X. Zhang, “Pyranodipyran derivatives with tyrosyl DNA phosphodiesterase 1 inhibitory activities and fluorescent properties from Aspergillus sp. EGF 15-0-3,” Marine Drugs, vol. 20, no. 3, 2022.
[22] H. Fan, X. H. Shao, P. P. Wu, A. L. Hao, Z. W. Luo, M. D. Zhang, J. Xie, B. Peng, and C. X. Zhang, “Exploring brominated aromatic butenolides from Aspergillus terreus EGF7-0-1 with their antifungal activities,” Journal of Agricultural and Food Chemistry, vol. 72, no. 36, pp. 19869–19882, 2024.
[23] Q. Zeng, Y. Chen, J. Wang, X. Shi, Y. Che, X. Chen, W. Zhong, W. Zhang, X. Wei, F. Wang, and S. Zhang, “Diverse secondary metabolites from the coral-derived fungus Aspergillus hiratsukae SCSIO 5Bn1003,” Marine Drugs, vol. 20, no. 2, 2022.
[24] C. J. Zheng, C. L. Shao, L. Y. Wu, M. Chen, K. L. Wang, D. L. Zhao, X. P. Sun, G. Y. Chen, and C. Y. Wang, “Bioactive phenylalanine derivatives and cytochalasins from the soft coral-derived fungus, Aspergillus elegans,” Marine Drugs, vol. 11, no. 6, pp. 2054–2068, 2013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Vietnam Academy of Science and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


